Notes of gaussian

本教程基于 HPC of zhenggroup 集群环境

参考资料 http://sobereva.com/list.html

零、理论基础

泛函/基组设置

简谈量子化学计算中DFT泛函的选择
谈谈量子化学中基组的选择

激发态

乱谈激发态的计算方法
Gaussian中用TDDFT计算激发态和吸收、荧光、磷光光谱的方法
电子激发任务中轨道跃迁贡献的计算

一、输入文件

input.gjf

1
2
3
4
5
6
7
8
9
10
11
12
13
%mem=84GB
%nprocshared=48
%chk=COF-3-td.chk
#p PBE1PBE scrf=(smd,solvent=water) def2TZVP em=GD3BJ TD(nstates=10) IOp(9/40=4)

COF-3

0 1
C 33.03196170 -14.12931527 1.88576471
H 31.92769914 -14.10953751 2.72772983
O 30.78605907 -13.40639889 2.39344442
N 30.71722291 -12.70823752 1.19042342
...

二、输出文件

chk → fchk
/public/software/g16/formchk filename

HOMO-LUMO gap

理论基础

正确地认识分子的能隙(gap)、HOMO和LUMO
(计算DFT, 虚拟态,轨道没有真实存在)
HOMO-LUMO gap = E(LUMO) - E(HOMO) > 0
(UV-Vis:波长最大的吸收峰位置; TDDFT,真实态,电子态真实存在)
Optical gap: 基态电子态通过吸收光子所能跃迁到的最低激发态对应的激发能,S0态极小点结构下S0到S1态的垂直跃迁对应的激发能。

  1. HOMO-LUMO gap越小,一般认为导电性越好。
  2. HOMO-LUMO gap越小,通常极化率也越大

三、结果分析

Excitation、S/D、Visualization

Excitation
  1. Multiwfn
  2. input.out (out文件路径)
  3. 18-Electron excitation analysis
  4. 15-Print major MO transitions in all excited states
S/D
  1. Multiwfn
  2. COF-3-td.fchk (fchk文件路径)
  3. 18-Electron excitation analysis
  4. 1-Analyze and visualize hole&electron distribution, transition density, and transition electric/magnetic dipole moment density
  5. input.out (out文件路径)
  6. S0→S?
  7. 1-Visualize and analyze hole, electron, transition density and so on
  8. 2-Medium quality grid, covering whole system, about 512000 points in total
    Sm index/D index
  9. 3-Show isosurface of hole and electron distribution simultaneously
  10. 7-Show isosurface of charge density difference
Visualization

https://www.bilibili.com/video/BV1B94y1J7gR/?spm_id_from=333.788&vd_source=dbd7edddb514b6a82b44048682e9c391
cube 文件生成 + VMD可视化

文献引用

[1] def2-TZVP基组 https://doi.org/10.1063/1.467146
[2] Multiwfn https://doi.org/10.1002/jcc.22885
[3] 溶剂模型 https://doi.org/10.1063/1.3359469
[4] xtb https://doi.org/10.1021/acs.jctc.8b01176
[5] D3BJ https://doi.org/10.1002/jcc.21759